Jacob is a teacher. He made $75$ cookies to give to his students on the first day of school. He gave $2$ cookies to each student who showed up for class.
Let $g(n)$ be the remaining number of cookies Jacob had *before* the $n^\text{th}$ student arrived.
**$g$ is a sequence. What kind of sequence is it?**
[[☃ radio 1]]
**Complete the recursive formula for $g(n)$.**
$g(1)=$ [[☃ input-number 3]]
$g(n)=g(n-1)$[[☃ dropdown 1]][[☃ input-number 4]]